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Mathematical formulation of the proposed autoencoders

In what follows, we use the notation proposed in [1] to derive the extension of
the Mean Maximum Discrepancy Autoencoder (MMDAE) and Mean Maximum
Discrepancy Variational Autoencoder (MMDVAE) [1] with multiple Gaussian
distributions.

p∗(x) is the unknown probability in the input space over which the optimi-
sation problem is formulated. A similarity measure L between the input and
the output of the autoencoders (AEs) with respect to the distribution p∗(x) is
maximised:

arg max
φ,θ

E[L(x, dθ(eφ(x)))],

where φ and θ are the weights of the encoder and decoder networks, respectively;
eφ : x 7→ z and dθ : z 7→ x, where z is the latent representation of x and
|z| ≤ |x|.

In variational AEs, the input x is mapped into a probability distribution
over the latent space. e(z|x) defines a distribution over the latent space that
depends on the input x drawn from p∗(x). Altogether, p∗(x) and e(z|x) define
the joint distribution pe(x, z) = e(z|x)p∗(x), whose marginal and conditional
distributions are defined as:

pe(z) =

∫
pe(x, z)dx =

∫
pe(z|x)p∗(x)dx

pe(x|z) =
pe(x, z)

pe(z)
.

Since the representation z of x should maintain as much as possible the “amount
of information” held in x, the mutual information I(x; z) can be used to measure
the representation z of x. Specifically, for any distribution q(z) in the latent
space, the mutual information between pe(z) and p∗(x) can be bounded below
as:

I(x; z) = KL(pe(x, z)||p∗(x)pe(z)) ≤ E[KL(e(z|x)||q(z))],

where KL(·) is the Kullback–Leibler divergence [2] between two distributions.
I(x; z) can be also bounded above, for any conditional distribution d(x|z), as:

I(x; z) = KL(pe(x, z)||p∗(x)pe(z)) ≥ E

[
log

(
d(x|z)

p∗(x)

)]
.



Combining the provided definitions, we obtain that:

E

[
log

(
d(x|z)

p∗(x)

)]
≤ I(x; z) ≤ E[KL(e(z|x)||q(z))].

The lower bound can be further decomposed by means of algebraic manipula-
tions as

E

[
log

(
d(x|z)

p∗(x)

)]
= E[log(d(x|z)) +H(p∗(x))],

where H(p∗(x))] is the entropy of p∗(x). By following the definition provided
in [1], the ELBO term, which is the measure maximised during the training of
VAE, can be written as:

ELBO = −KL(pe(z)||q(z))−H(p∗(x))− E[KL(pe(x|z)||d(x|z))].

In MMDVAE [1], KL(pe(z)||q(z)) is multiplied by a positive factor λ and I(x; z),
weighted by a positive factor α, is added to the ELBO term, obtaining:

ELBO =− λKL(pe(z)||q(z))

−H(p∗(x)

− E[KL(pe(x|z)||d(x|z))]

+ αI(x; z).

By applying algebraic manipulations, the ELBO term of MMDVAE can be
written as:

ELBO = E[log(d(x|z))] (1)

− (α+ λ− 1)KL(pe(z)||q(z))

− (1− α)E[KL(pe(z|x)||q(z)).

In MMDVAE, the term KL(pe(z)||q(z)) is replaced with DSD(pe(z)||q(z)),
where DSD(·) is a general strict divergence function. DSD(pe(z)||q(z)) = 0
if and only if pe(·) = q(·). Notice that, the KL is a strict divergence func-
tion. MMDVAE exploits the Maximum Mean Discrepancy MMD(·) divergence
function [3]. A kernel trick is used to define the following divergence function
between two distributions pe(z) and q(z):

MMD(pe(z)||q(z)) = Epe(z),p(z
′)[K(z, z′)]

+ Eq(z),q(z′)[K(z, z′)]

− 2Epe(z),q(z
′)[K(z, z′)],

where K(z, z′) can be any desired universal kernel. Here, we considered the
Gaussian kernel

K(z, z′) = e−
||z−z′||

2σ2 .

We extended the ELBO term shown in Eq. 1 such that multiple Gaussian
distributions can be used in the latent representation z. In addition, we intro-
duced a learnable mixture distribution for q(z), whereas pe(z|x) is defined to
be a learnable mixture distribution with the same number of components.



In GMVAE [4], the encoder function outputs the following two conditional
distributions e(z, y|x) and e(z|x, y), where y ∈ {1, . . . ,K} is a categorical ran-
dom variable and K corresponds to the number of desired Gaussian distribu-
tions. We obtain that

pe(z, y|x) =
pe(z, y,x)

p∗(x)

= e(z|y,x)e(y|x).

Since pe(z, y|x) is fully determined by the output distributions of the encoder,
we can refer to pe(z, y|x) with e(z, y|x).

Modelling e(y|x) as a categorical distribution that can assume values in
{1, . . . ,K}, and e(z|x, y) as a diagonal Gaussian distribution for each possible
value assumed by y, the marginal conditional distribution pe(z|x) is a Gaussian
mixture distribution of K components, namely:

pe(z|x) =

K∑
y=1

e(z|y,x)e(y|x).

Similarly, q(z) is modelled as a Gaussian mixture distribution by using another
variable y ∈ {1, . . . ,K}, with a categorical distribution q(y), and considering
the conditional distribution q(z|y) as a diagonal Gaussian distribution for each
possible value of y. The ELBO term of GMVAE is:

ELBO = E

[
E

[
d(x|y,z)− log

(
e(z, y|x)

q(z, y)

)]]
,

and it can be rewritten by using the notation proposed in [1] and by algebraic
manipulations as:

ELBO = −KL(pe(z, y)||q(z, y))

= −E[KL(pe(x|z, y)||d(x|z, y))]

= −H(p∗(x)).

Starting from this definition, we can add the mutual information I(x; (y,z))
term, weighted by a positive scalar factor α, and KL(pe(z, y)||q(z, y)) is weighted
by a positive factor λ, obtaining:

ELBO =− λKL(pe(z, y)||q(z, y))

−H(p∗(x))

− E[KL(pe(x|z, y)||d(x|z, y))]

+ αI(x; (y,z)),

where

I(x; (y,z)) = E

[
log

pe(x, y,z)

p∗(x)pe(z, y))

]
.

By applying algebraic manipulations, we can rewrite the ELBO term as:

ELBO = E[log(d(x|z, y))]

− (α+ λ− 1)KL(pe(z, y)||q(z, y))

− (1− α)E[KL(pe(z, y|x)||q(z, y))].



KL(pe(z, y)||q(z, y)) can be further decomposed as:

KL(pe(z, y)||q(z, y)) = E[KL(pe(y|z)||q(y|z))] + KL(pe(z)||q(z)),

so that the ELBO can be written as:

ELBO = E[log(d(x|z, y))]

− (α+ λ− 1)KL(pe(z)||q(z))

− (1− α)E[KL(pe(z, y|x)||q(z, y))].

As in MMDVAE (see Eq. 1), we can replace KL(pe(z)||q(z)) with a general
strict divergence function. We considered the MMD(·) term, obtaining the a
general formulation for all the five AEs:

ELBO = E[log(d(x|z, y))] (2)

− (α+ λ− 1)MMD(pe(z)||q(z))

− (1− α)E[KL(pe(z, y|x)||q(z, y))].

We modified the MMD(pe(z)||q(z)) such that it is not necessary to sample
from the Gaussian mixture distribution e(z|x) or from the posterior q(z). Our
modification allows for sampling from the single Gaussian distributions that
form the mixtures. We used the the reparametrization trick proposed in [5] so
that MMD(pe(z)||q(z)) can be approximated. Specifically, Epe(z),p(z

′)[K(z, z′)]
can be approximated as:

1

N2

N∑
i=1

N∑
j=1

K∑
y=1

K∑
y′=1

pe(y, xi)pe(y
′, x′j)Epe(z|xi,y),pe(z

′|x′j ,y′)[K(z, z′)],

where N is the number of provided samples (i.e., cells). The approximation of
Eq(z),q(z′)[K(z, z′)] is:

K∑
y=1

K∑
y′=1

q(y)q(y′)Eq(z|y),q(z′|y′)[K(z, z′)].

Finally, Epe(z),q(z
′)[K(z, z′)] is approximated as:

N∑
i=1

K∑
y=1

K∑
y′=1

pe(y|xi)q(y′)Epe(z|y,xi),q(z
′|y′)[K(z, z′)].

To calculate the ELBO function described in Eq. 2, E[KL(pe(z, y|x)||q(z, y))]
must be computable. We can rewrite it as follows:

E[KL(pe(z, y|x)||q(z, y))] = E

[
log

pe(z|y,x)pe(y|x)

q(z|y)q(y)

]

= E

[
log

pe(z|y,x)

q(z|y)

]
+ E

[
E

[
log

pe(y|x)

q(y)

]]
= E[KL(pe(y|x)||q(y))] + E[E[KL(pe(z|x, y)||q(z|y))]].



Considering the weights of q(z) fixed to a uniform distribution, E[KL(pe(y|x)||q(y))]
can be written as:

E[KL(pe(y|x)||q(y))] = E

[
K∑

y=1

pe(y|x) log(pe(y|x))

]
+ log(K).

On the contrary, when the weights are learnable, E[KL(pe(y|x)||q(y))] can be
analytically calculated as:

E[KL(pe(y|x)||q(y))] = E

[
K∑

y=1

pe(y|x) log(pe(y|x))−
K∑

y=1

pe(y|x) log(q(y))

]
.

Finally, KL(pe(z|x, y)||q(z|y)) can be calculated by the following approxi-
mation:

KL(pe(z|x, y)||q(z|y)) = E

[
log

pe(z|x, y)

q(z|y)

]
≈ log

pe(z|x, y)

q(z|y)

Additional Files

Additional file 2 — Excel file of the metrics calculated for
the PBMC datasets

Each tab is related to a tested approach and shows the calculated metrics and
used method.

Additional file 3 — Excel file of the metrics calculated for
the PIC datasets

Each tab is related to a tested approach and shows the calculated metrics and
used method.

Additional file 4 — Excel file of the metrics calculated for
the MCA datasets

Each tab is related to a tested approach and shows the calculated metrics and
used method.
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